Fuzzy Sets and
Relations

The chapter provides an introduction to fuzzy sets, fuzzy relations and some
elementary fuzzy operators such as t-norm, s-norm, max-min composition and
max-product composition operators. The extension principle of fuzzy sets and
the concept of projection and cylindrical extension have been outlined in the
chapter with examples. A brief introduction to fuzzy linguistic variables and
fuzzy hedges is also given at the end of the chapter.

2.1 Conventional Sets

Mathematicians define sets as a collection of objects having one or more
common characteristics. The objects that belong to a set are called members/
elements. The characteristics used to define a set should be sufficient to identify
its members. For example, persons enrolled for a course may together be called
a STUDENT set. We call it a set as we can easily determine whether a person is
a student by checking his/her name in the registrar book. LARGE RIVERS of a
country, however, should not be called a set unless we clearly define their
minimum length to be considered as LARGE.

Let A be a set and x be a member of A, we can denote this by the following
notation:
XeEA 2.1
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Also let y be a member of set B, such that for all y, y is also a member of A.
Then B is called the subset of A, denoted by

B CA. (2.2)

If B is a subset of A but every element of A are not present in B then B is called
the proper subset of A, denoted by

B cA. (2.3)

If every element contained in B is an element of A and every element contained
in A is an element of B, then set A and set B are equal, given by

A =B. 2.4)

For any 2 sets A and B if there exist at least one common element x of both A
and B, then we say that

xe(ANB), (2.5)
where M denotes a logical intersection operation.

For any 2 sets A and B if there exists at least one element x, such that x is a
member of A or B, then we say that

xe (A U B), (2.6)
where U denotes a union operation.
A universal set U in a particular domain is a set that includes all possible

members of that domain. In other words, all sets in a given domain are subsets
of the universal set U.

2.2 Fuzzy Sets

In a conventional set, the condition defining the set boundaries is very rigid. For
example, consider a universal set AGE, OLD, VERY OLD, YOUNG, CHILD
and BABY are subsets of the universal set AGE. The conventional approach to
define these sets are illustrated below:

BABY={age € AGE: 0 year < age <lyear},

CHILD={age € AGE: 1 year < age <10years},

YOUNG= {age € AGE: 19 years < age < 40years},
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OLD-= {age € AGE: 60 years < age < 80years},

and VERY OLD= {age € AGE: 80 years < age < 120 years}.

In the above definitions age is a variable that may presume any value in the
range [0, 120] years. It is clear from the definitions that the boundary of each set
is distinct. Thus an age=11 months 29 days is a member of the set BABY, but
once it is 1 year it falls in the set CHILD. Thus there is a sharp demarcation in
the boundary definition of the sets BABY and CHILD at age=1 year.
Measurements in a real world system being highly imprecise, such a sharp
demarcation of 2 set boundaries may cause a wrong allocation of the members
to a given set.

Another characteristic of a conventional set includes assignment of a grade
of membership 1 to all its members and O to all its non-members. The following
connotation is used to describe that the membership of an element x in a set A is
1, and the membership of a non-element y in the set A is O.

Ma (x)=1 2.7

Ma (y)=0 (2.8)

A fuzzy set extends the binary membership: {0,1} of a conventional set to a
spectrum in the interval of [0, 1]. Further, unlike a conventional set, all elements
of the universal set U are members of a given set A. Thus for each element xe U,

0< Wa (x) <1. (2.9)

It needs mention here that as all elements of a universal set U are members
of a given fuzzy set A, therefore, 2 fuzzy sets A and B may have an overlap in
the boundary definitions. For example, in contrast to the respective conventional
sets: BABY, CHILD, YOUNG, OLD and VERY OLD, the corresponding fuzzy
sets allow any age in the interval [0, 120] years as a member of each of the
above sets but with different memberships in [0, 1]. As a specific instance, the
age 22 is a member of all the fuzzy sets but the membership of age (=22) to
belong to the sets BABY, CHILD, YOUNG, OLD and VERY OLD respectively
are 0.001, 0.01,1.00, 0.60 and 0.20. The above example makes sense in the line
of reasoning that an age of 22 corresponds to a young person, so the
membership of age (=22) to be young is high (1.00). The relative grading of the
other memberships thus can be easily understood from the usual meaning of the
terms BABY, CHILD, OLD and VERY OLD.

A fuzzy set thus can be formally defined as follows.
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Definition 2.1: A fuzzy set A is a set of ordered pairs, given by
A={(x, s (x)): xe X} (2.10)

where X is a universal set of objects (also called the universe of discourse) and
Ua(x) is the grade of membership of the object x in A. Usually, U, (x) lies in the
closed interval of [0,1].

It may be added here that some authors [7] relax the range of membership
from [0, 1] to [0, Ry.x] where R« is a positive finite real number. One can
easily convert [0, Ry,,] to [0, 1] by dividing the membership values in the range
[0, Run] bY R

There are other notations of fuzzy sets as well. For instance, the ordered pair
(X, Ua (x)) in the definition of fuzzy set is also written as X/ [La (X) or Wa (X)/X as
well. Let the elements of set X be xj, X5, ...,X,. Then the fuzzy set Ac X is
denoted by any of the following nomenclature.

A= {(x1, Ha (X1)), (X2, Ha (X2)), oenenn J(Xns Ha (Xn))}, OF
A= {x1/ Ua (X1), X2/ Ua (X2), ceenennnn Xn/ Ua (Xp)}, or

A= {x) /s (X)) + X2/ s (X)) + ceennenn. + X,/ Ua (X)}, or
A= {Ua X))/ X1+ Ua () Xp+ ceneennn + Ua (Xp)/ X, }, OF
A= {ta (X)) X1, M (X2) Xoy eoeeen. s (X0)/ Xo ).

In this book we used the last option. The details of membership function Ha(x) is
formalized below.

2.3 Membership Functions

The grade of membership L4 (X) maps the object or its attribute x to positive real
numbers in the interval [0, 1]. Because of its mapping characteristics like a
function, it is called membership function. A formal definition of the
membership function is given below for the convenience of the readers.

Definition 2.2: A membership function U, (x) is characterized by the following

mapping:
pa: x — [0, 1], xeX 2.11)

where x is a real number describing an object or its attribute and X is the
universe of discourse and A is a subset of X.
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A question that naturally arises is: how to construct a membership function?
The following examples provide a thorough insight to the selection of the
membership functions.

Example 2.1: Consider the problem of defining BABY, CHILD, YOUNG,
OLD and VERY OLD by membership functions. The closer the age of a person
to 0, the higher is his/her membership to be a BABY. So, if x is the age of the
person, we can define BABY as follows:

BABY= {(x, Upapy (X)} Where Upapy (X)= exp(-X). (2.12)

Thus as x—0, Ugapy (x) —1. Further, as x increases, Ugapy (X) decreases
exponentially. The membership function Ugapy (X) can also be designed to have
a controlled decrease with increasing x by including a factor o to x in exp(-X).
Thus,

Upapy (X)=exp (- ox) for o> 0. (2.13)

Larger the value of o, the higher is the falling rate of Ugapy(X) over x. In a
similar manner we can define the membership functions for CHILD, YOUNG,
OLD and VERY OLD fuzzy sets. But before representing them mathematically
let us take a look at them.

1.0

M chp (X)

U young (X)

0.5

M vErY oLp (X)

0 15 25 50 120

Fig. 2.1: Membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD
and VERY OLD. The x-axis denotes the age in years and the y-axis denotes the
memberships of the given fuzzy sets at different ages.

The membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and
VERY OLD are shown in Fig. 2.1. The curve for CHILD fuzzy set has the peak
at some age slightly greater than 0 and has a sharp fall off around the peak. The
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logical interpretation of this directly follows from the meaning of the word
child. The membership curve for the fuzzy set YOUNG has a peak at age x=25
and falls off very slowly on both sides around the peak. As youth is the most
charming period of the human beings, we prefer to call people YOUNG even if
they are away from 25 on either side. If the readers' view is different they can
allow a sharp falloff of the curve around the age x=25. One interesting point to
note about the OLD and VERY OLD membership curves is that OLD curve
throughout has a higher membership than the VERY OLD curve until both
saturate at age x = 120 years. This is meaningful because if someone is called
VERY OLD then he must be OLD, but the converse may not be true.

There are many ways to represent the membership functions shown in Fig.
2.1 by mathematical functions. One such representation is given below:

W caip (X)= ax*/(1+bx” + ¢x), a, b, ¢>0. (2.14)
U young (X) =exp [- (x-25)* /26%], ©>0 (2.15)
W oLp (X)= 1- exp (- dx?), d >0, and (2.16)
U very oLp (X)= 1- exp(-dx), d>0. (2.17)

The parameters a, b, ¢ and d in the above membership functions are selected
intuitively by the experts based on their subjective judgement in the respective
domains. Tuning of these parameters is needed to control the curvature and
sharp changes on the curves around some selected x-values.

2.4 Continuous and Discrete Membership Functions

The universe of discourse (or simply the universe) of a fuzzy set may exist for
both discrete and continuous spectrum. For example, the roll number of students
in a class is a discrete universe. On the other hand the height of persons is a
continuous universe as height may take up any values between 4' to 8'. It may be
mentioned here that a continuous universe is sometimes sampled at regular or
irregular intervals for using it as a discrete universe. The membership curve of
YOUNG in Fig. 2.1 may be, for instance, discretized at age x= 18, 22, 24, 28.
This is an example of non-uniform/ irregular sampling as the intervals of
sampling 18-22, 22-24, 24-28 are unequal. The membership curve of YOUNG
may alternatively be sampled at a regular interval of age x=18, 20, 22, 24, say.
This is an example of uniform/ regular sampling. Fig. 2.2(a) and (b) describe
the instances of the non-uniform and uniform sampling of the YOUNG
membership curve.
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Fig. 2.2: (a) Non-uniform and (b) uniform sampling of the YOUNG membership curve.

2.5 Typical Membership Functions

In theory, membership functions usually can take any form. But in most
practical applications, triangular, Gaussian (bell-shaped), S-function and +-
functions are commonly used. In this section, these 4 functions are outlined.

2.5.1 The y-Function

This function has 2 parameters o and f. It is formally defined by
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Y (u; o ,)=0, u<o,
=u-o)P-o o <u <P,
(2.18)
=1 u>p

Fig. 2.3 describes the graphical representation of the y-function.

1.0

Membership —

u—

Fig. 2.3: The membership curve for the y-function.

The membership function OLD in our previous example can be, for instance,
described by the y-function. Suppose we call someone OLD with some positive
membership if his age exceeds 60 and call someone OLD with membership =1.0
when his age attains 90. So, the y-function in the present context should be

Y(age;60 ,90).
2.5.2 The s-Function

This function is a smooth version of the y-function mentioned above. It is
formally defined as follows.

S(u:aB.y) =0, u <o A
=2 [(u- o) (y-o), o<u<p

> (2.19)
= 1-2[(u- P/ (y-)’, P<u<y

=1, u>Yy. )

Generally, B=(c + y)/2 is considered in most applications of fuzzy logic. One
typical form of the S-function is presented in Fig. 2.4 below.
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Fig. 2.4: One typical S-function.

The S-function also may be used to represent the OLD membership
function. As the slope of the function at u = is very small, we can select a
smaller age u to represent the OLD membership function. S(age; 40,60,90) thus
is one choice for the membership function OLD.

2.5.3 The L-Function

This function is the converse of the typical y-function. It can be mathematically
expressed as

L(u; o) =1, u<o
=(a-u)/(f-a), a<u<P (2.20)
=0, u>p
1.0
1
=
=
=
I
o p
u -

Fig. 2.5: One typical form of the L-function.
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One typical form of the L-function is presented in Fig. 2.5. L-functions are
generally used to represent the fuzzy linguistic positive small. Suppose u is a fuzzy
variable which should essentially have a positive value. Now, as u increases its
membership should decrease. As a second example, suppose we are interested to describe
the average intensity of the pixels (points) in an image by a fuzzy linguistic: not very
dark. So, until the average intensity exceeds 0u(=50, say), its membership of being
not very dark is 1 and falls off if the average intensity exceeds .

2.5.4 The Triangular Membership Function

The triangular membership function, also called the bell-shaped function with
straight lines, can be formally defined as follows:

Adu; ouB,y) =0, u<o
=(u-o)/(P- o), o<u <B

(2.21)

=(o-u)/(B-0), PB<us<y »

=0, u>y

/
One typical plot of the triangular membership function is given in Fig. 2.6.

The YOUNG membership function, for instance, can be represented by the
triangular membership function. We can set age o= 20, = 25 and y= 30 as the
typical parameters for the YOUNG membership function in order to represent it
by a triangular membership function.

1.0

Membership function —

u —

Fig. 2.6: One typical form of the triangular membership function.
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2.5.5 The I1-function
The IT-function can be formally described as follows:
I(u; o,B,7,6)=0, u<sao ~
=(u- o)/ (B-a), o<u<P
=1, B<u <y > (2.22)

=(y-u/ G-y, y<u<d

=0, u>0. /

One typical plot of the I1-function is given in Fig. 2.7. The I1-function is used to
represent the fuzzy linguistic: neither so high nor so low. For example suppose
we want to express that today is neither so hot nor so cold. This can be
represented by a fuzzy membership curve plotted against temperature. It may be
noted that for temperature below a threshold th; and above a threshold th,, the
membership of the said curve should be close to one and it should have falloffs
below th; and above th,. Thus a Il-function is an ideal choice for the
representation of the fuzzy linguistic neither so hot nor so cold.

Membership —

u —
Fig. 2.7: One typical form of the IT-function.

2.5.6 The Gaussian Membership Function

A Gaussian membership function is defined by
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G(u; m, 6) = exp [- {(u - m)N26}?] (2.23)

where the parameters m and ¢ control the center and width of the membership
function. A plot of the Gaussian membership function is presented in Fig. 2.8.

1.0 —

Membership —

m

Fig. 2.8: One typical form of the Gaussian function.

The Gaussian membership function has a wide application in the literature on
fuzzy sets and systems. The YOUNG membership function illustrated earlier,
for instance, can also be described by a Gaussian membership function with
mean m=22 years, say. Smaller the value of variance of the curve, higher is its
sharpness around the mean.

2.6 Operation on Fuzzy Sets

Unlike conventional sets, the operations on fuzzy sets are usually described with
reference to membership functions. Among the common operations on fuzzy
sets fuzzy T-norm, fuzzy S-norm and fuzzy complementation need special
mention. They are outlined below.

2.6.1 Fuzzy T-Norm

For any 2 fuzzy sets A and B under a common universe of discourse X, the
intersection of the fuzzy sets, characterized by a T-norm operator, is given by

Uans(X) = T(UA(X), Up(X)). (2.24)

For any membership values a, b, ¢ and d, the T-norm operator T can be formally
defined as follows.

T(0, 0)=0, T(a, 1) =T(1, a)=a (boundary)

T(a,b) <T (c,d)if a<c and b <d (monotonicity)
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T(a, b) = T(b, a) (commutativity)

T(a, T(b, c))= T(T(a, b), ¢) (associativity)
Definition 2.3: A function T: [0, 1] x [0, 1]— [0, 1] that satisfies the above 4
characteristics is called a T-norm.

Example2.2: The following are the examples of the typical T-norm function.

a) Minimum: Tmin (a, b) = min(a, b) (2.25)

b) Algebraic product: Typ(a, b)=ab (2.26)

¢) Einstein product: Tep(a, b) =ab/ {2 - (a+b -ab)} (2.27)

d) Drastic product: Typ(a, b)=aif b=1 (2.28)
=b if a=1

=0 otherwise.
2.6.2 Fuzzy S-Norm

For any 2 fuzzy sets A and B under a common universe X, the union of fuzzy
sets, characterized by a S-norm (T-co-norm) operator is given by

Haus(X) = S(UAX), Up(X)). (2.29)

For any membership values a, b, ¢c and d, the S-norm operator S can be formally
defined as follows.

S(1, 1)=1, S(a, 0) =S(0, a)=a (boundary)
S(a,b) <S(c,d)ifa<cand b<d (monotonicity)

S(a, b) = S(b, a) (commutativity)
S(a, S(b, ¢))= S(S(a, b), ¢) (associativity)

Definition 2.3: A function S: [0, 1] X [0, 1]— [0, 1] that satisfies the above 4
characteristics is called a S-norm.

Example2.3: The following are the examples of the typical S-norm function.
a) Maximum: Simax (a, b) = max(a, b) (2.30)

b) Algebraic sum: S.(a, b) =a+b-ab (2.31)
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¢) Einstein sum: Ses(a, b) = (a + b)/ (1 +ab) (2.32)
d) Drastic sum: Sas(a, b)=a if b=0 (2.33)
=b if a=0

=1 otherwise.

2.6.3 Fuzzy Complement

Given a fuzzy set A under the universal set X, fuzzy complementation over set
A is a mapping that transforms the membership function of A into the
membership function of the complement of A, denoted by A°. Mathematically,
the complementation function c is given by

c[ua(X)] = pa® (x) (2.34)

The fuzzy complementation function should essentially satisfy the following 2
criteria:

l.c(O)=1landc(1)=0 (boundary condition)
2. For any 2 fuzzy memberships a and b,
if a< b then c(a) > c(b) (non-increasing condition)

Definition 2.4: Any function c: [0, 1] —[0, 1] that satisfies the above 2
characteristics is called fuzzy complementation.

Example 2.4: The following functions are typical examples of fuzzy
complementation.

a)  c[Ha(x)] = 1- pa(x) (2.35)
b) ¢, (a)=(1-a)/ (1 +Aa) (Sugeno class of complements) (2.36)

where for each value of the parameter A in (-1, o) we obtain a particular
fuzzy complement.

c) cy(a)=(1-a")"™ (Yager class of complements)  (2.37)

where for each value of w in (0, <) we obtain a particular fuzzy
complement.

2.7 Basic Concepts Associated with Fuzzy Sets

This section introduces some elementary concepts associated with fuzzy sets.
They are outlined below with examples.
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Definition 2.5: The support of a fuzzy set A is the set of all points x in X such
that 4(x) >0. Formally,

Support(A) = {x |pa(x) >0} (2.38)

Definition 2.6: The core of a fuzzy set A is the set of points x in X such that
Ua(x)=1. Formally,

Core(A)= {x | pa(x) =1} (2.39)

Definition 2.7: A fuzzy set with non-empty core is called normal. In other
words, A is normal if Ix, pa(x) =1.

Definition 2.8: A crossover point denotes a point x in X where Ua(x) =0.5.
Mathematically,

Crossover (A) = {x | pa(x) =0.5}. (2.40)

Definition 2.9: The o-cut, also called orlevel, of a fuzzy set A is a crisp set
denoted by A, is given by

Ae= (x |pat) 20, (241)

Definition 2.10: The strong o-cut, also called the strong o-level, of a fuzzy set
A is a crisp set denoted by A, " is given by

At =[x [ >al. (2.42)

Example 2.5: For the fuzzy set A = {0.1/xy, 0.5/x,, 0.7/x3, 0.9/x4, 1.0/x5,0.5/X¢}

Support (A)= {xy, Xs, X3, X4, X5, X¢} since for all the elements X, Xp, X3, X4, X5, X¢
of set A the membership values are greater than 0.

Core (A) = {xs} since Ha(Xs )=1.

Crossover point (A) = {X», X¢} since both at x= X, and X the membership value
is 0.5.

A, | 0=07 = {Xi, X3, X4, X5} because for all these elements the membership values
are greater than or equal to 0.7.

Ayt | 0=07 = {X1, X4, X5} because for all these elements the membership values
are greater than 0.7.
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Definition 2.11: A fuzzy set A is convex if and only for any 2 points x; and x;
and a real scalar A in [0, 1],

Ha (Ax; + (1 - A) x2) 2 min [Ua(X)), Ha(X2)] (2.43)

Definition 2.12: A fuzzy number A is a fuzzy set on the real line that satisfies
the conditions for convexity and normality.

Definition 2.13: A fuzzy set A is symmetric around a point x= c if
Ualc + x) = nalc - x) for all x belonging to X.

A Gaussian type membership function, for instance, is symmetric around the
mean value of the function.

2.8 Extension Principle of Fuzzy Sets

Let f (.) be a mapping function from fuzzy universal set X to fuzzy universal set
Y, and A and B are subsets of X and Y respectively. Let the fuzzy set A be
given by

A= {Ha (X X1, Ua (X2)/ X2, oennenen. , Ma (Xn) Xp}. (2.44)
If there is a one to one mapping from X; to y;=f(x;) then B is given by
B=f(A) ={ua xXp)/ f(x)), La (X2)/ f(X2), «eevne... , Ma (Xp)/ f(X4)}
={la XD/ Y1, Ha (X2)/ ¥y oo s Ma (Xn)/ Ya}- (2.45)
But if many to one mapping exists from set X to Y then a maximum of the

memberships of f(x), f(xj),..., f(x¢), where f(x)= f(xj)=...=f(xy) should be
taken. Formally, for many to one mapping from set X to Y,

Ug(y)= max [ps (x): x €f'(y)] (2.46)

Example 2.6: The computation of B=f(A) is illustrated in this example. Let
A={0.2/ (-1), 0.4/ (-2), 0.6/(1), 0.8/(2), 0.9/ (3)}, and f(x) = x". Here, since
f(-1)=1f(1)=1, and f(- 2) = {(2)=4,

up(f-1)= pp(f(1)) =max [a (X) [ op, [a ) [=-11

=max[0.6, 0.2]
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=0.6.
Similarly, ug(f(-2))= pup(f(2))= max [0.4, 0.8]

=0.8.
Consequently, B = f (A) ={0.6/ (1%), 0.8/(2%), 0.9/(3%)}

={0.6/1,0.8/4,0.9/9}.

So far we discussed mapping from a one dimensional space X to another one
dimensional space Y. In general the mapping can be defined from an n
dimensional product space X; X XX X3 X......... X X, to a single universe Y.
Here X X, ...., X, denote fuzzy universes. The mapping function in the present
context is denoted by f(x;, X, ..., X,), where x|€ Xj, X, €X,, ...., and x, € X, If
Al Ay, ... , A, are n fuzzy sets in X, X,...and X, respectively, then extension
principle asserts that the fuzzy set B induced by the mapping from A;, A,,
...,A, is given by
B={up(y)/ y, where y = f(xy, Xp, ....,X,)} with

Ug(y)=  max [min { ta; (X)), Ha2 (X2)s s Man (Xo),], if  £7'(y) =null set,
(Xlsxz,---,xn)ef-l(y)

=0, otherwise. (2.47)

Example 2.7: In this example we illustrate the extension principle for a function
f of 2 variables x; and x,. Let f(x;, X») = X;+X,, and

A={0.2/-1, 0.4/0, 0.6/1} and A,={0.8/-1, 0.6/0, 0.7/1}.
Here, X;={-1,0, 1} and X,= {-1, 0, 1} as well.
Thus X, x X; =((-1,-1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1,-1), (1,0), (1,1)}
Consequently, f(-1,0)= (0, -1)= 0+(-1) =-1,
f(1, -1)=1(-1, 1)=-1 +1 =0,
f(1,0)=1(0, 1) =0 +1=1,
f(-1,-1) =-2, (0, 0) =0, f(1,1) =2.

So, ug(y) at y=f(-1,0)
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=Up(y) at y=£(0, -1)
=max{min(0.2, 0.6), min (0.4, 0.8)}=0.4.
Similarly, pug(y) at y=f(1,-1)
=up(y) aty=1(-1, 1)
=max {min(0.6, 0.8), min (0.2, 0.7)}=0.6, and
Up(y) at y=1£(1,0)
=ug(y) at y=£(0, 1)
=max {min(0.6, 0.6), min (0.4, 0.7)}=0.6, and
us(y) aty=f(-1,-1)
=min (0.2, 0.8)=0.2,
us(y) at y= £(0,0)
=min(0.4, 0.6) =0.4,
and Up(y) at y=f(1,1)
=min (0.6, 0.7) =0.6.

Consequently, B ={0.4/ f(-1, 0), 0.6/ f(-1, 1), 0.6/ f(1, 0),0.2/ f(-1, -1), 0.4/
£(0,0), 0.6/£(1,1)}= {0.4/-1, 0.6/0, 0.6/1, 0.2/-2, 0.4/0, 0.6/2}

2.9 Fuzzy Relations

Let X and Y be two arbitrary universal sets in the real plane. A fuzzy relation
between sets X and Y is given by

R(x, )= {Hr(x, /(x, y) [(x,y) € Xx Y} (2.48)

where Ur(X, y) denotes the membership of relation R(x, y). The following
example illustrates a fuzzy relation.

Example 2.8: Let X={x, x», X3} and Y= {y), y»} and suppose we are interested
in determining a fuzzy relation R(X, y), where the distance between x and y is
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close to zero for all x €X and for all ye Y. One typical function that can
describe this is
R(x,y) =exp [- (x-y)’]. (2.49)

How does the above expression describe the fuzzy relation 'x is close to y'? The
answer to this follows from the explanation below.

When x =y, R(x, y)=1; and when the difference between x and y is very
large R(x, y) approaches 0. Thus for a small difference between x and y the R(x,
y) is large and close to 1, and for a large difference between x and y the R(x, y)
is close to 0. To be specific, let X= {1, 2, 3} and Y = {1, 2}. Then we can
express R(x, y) by

R(x, y)= {exp[-(1-1)°1/ (1, 1), exp[-(1-2)°)/ (1,2), exp[-(2-1)*}/(2,1),
exp[-(2 -2)*1/ (2,2), exp[-(3 -1)*/ (3,1), exp[-(3 -2)*/(3,2)}
={1.0/(1,1), 0.43/(1,2), 0.43/ (2,1), 1.0/ (2,2), 0.16/(3, 1), 0.43/(3,2)}.

Generally, a relational matrix is used to describe a fuzzy relation. For instance,
the fuzzy relation: 'x is close to y' can be described as

y—
X
l
1 2
R(x, y)= 1 |10 0.43
2 1043 | 1.0
3 1016 043

The membership values Lr(X, y) in the matrix is shown by faint numbers and
the x- and y- values are denoted by bold numbers. Representation of a fuzzy
relation by matrices has many advantages to be explored gradually.

The fuzzy relation introduced above represents relationship between 2 fuzzy
sets. So, it is called binary fuzzy relation. A generalized fuzzy relation on the
other hand represents relationship among many fuzzy sets. A formal definition
of a (generalized) fuzzy relation is presented below.

Definition 2.14: A fuzzy relation is a fuzzy set defined in the Cartesian product
of crisp sets X, Xa,...., X, A fuzzy relation R(xy,X,, . X,) thus is defined as



56 Fuzzy Sets and Relations

R(XI,XZa,,....,Xn)
= {UR(X1:Xam, . XV (X1 %o, X) | (X1Xoe_ X)EX X Xp XX Xy} (2.50)
where Ug: XX X, X...X X, — [0, 1].

A binary fuzzy relation is a special case of the generalized fuzzy relation where
in stead of n universes we need only 2 universes.

2.10 Projection of Fuzzy Relations

Let us first consider a binary fuzzy relation R(X, y) defined on the Cartesian
product of the universes X and Y. The projection of R(X, y) on X, denoted by
R1 is given by

Mri(X)=max [Ur(X, y)] (2.51)
yeY

Similarly, the projection of R(x, y) on Y, denoted by R2 is given by

Ura(y)= max  [Ur(X, y)] (2.52)
xeX

Example 2.9:This example illustrates the principle of projection of a fuzzy
relation R(x, y) on 2 fuzzy universes X and Y. We take the fuzzy relation
constructed in the last section. The projection of R(x, y) on X universe is
computed by determining the maximum element in each row, and its dimension
will be same as the number of columns in R. The projection of R(x,y) on Y
universe is also computed similarly by determining the maximum element in
each column of R and its dimension will be same as the number of rows in R.

y—
< 1 2
. [10 To43 1.0
, (04310 0
, | 016 [043 043

X-projection
1.0 1.0

Y -projection

Fig. 2.9: Illustrating X- and Y- projection of a fuzzy relation.
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Until now we considered projection of a binary fuzzy relation. Now, we extend
the principle of projection for generalized fuzzy relations.

Definition 2.15: Projection of a fuzzy relation R(x;, x,...., X,) on to X; XxX;x X
Xy forany i, jand k in[1, n] is defined as a fuzzy relation R, where

Rp(Xi, Xj,...,X) = { max Urp(Xis Xjs- - X1 (Xiy X+ XK} (2.53)

Xi € Xi, Xj € Xj,...,Xx € Xk

2.11 Cylindrical Extension of Fuzzy Relations

Informally, cylindrical extension from a X-projection means filling all the
columns of the relational matrix by the X-projection. Similarly cylindrical
extension from a Y-projection means filling all the rows of the relational matrix
by the Y-projection. Examples illustrating the construction of cylindrical
extension from the X- and the Y-projections are given in Fig. 2.10 and Fig. 2.11
respectively.

1.0 1.0 1.0

1.0 1.0 1.0

0.43 | 043 0.43
Cylindrical extension X-projection

Fig. 2.10: Construction of cylindrical extension from X-projection.

Cylindrical extension

1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0 Y-projection

Fig. 2.11: Construction of cylindrical extension from the Y-projection.
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A cylindrical extension of a fuzzy relation R1(x) thus can be defined on X XY as a binary
fuzzy relation given by

RI(x, )= {Uri(x)/ (x, y) }- (2.54)

The suffix c of R1 in the above expression denotes its cylindrical extension. A
cylindrical extension from a projected fuzzy relation of m dimension, m > 1 is
presented below.

Definition 2.16: Let R be a fuzzy relation in X; xX;x XX for any (i, j, ....,k) in
[1, n]. The cylindrical extension of RI to X; XxX>X XX, is a fuzzy relation Rl
given by

R1c(X1, X2, . Xn) ={Mri (X1, X2,- . ,Xn) (X1, X250 ..00Xn ) } (2.55)

2.12 Fuzzy Max-Min and Max-Product
Composition Operation

Let us consider 2 fuzzy relations R; and R, defined on X X Y and Y X Z
respectively. The max-min composition of R; and R, is a fuzzy set defined by

R3=R10R2

={Ur3(x, 2)/ (x, 2)}

where Lg3(X, z)= max {min (Ug;(X, ¥), Ur2(Y, Z)) | xeX,yeY,zeZ}. (2.56)
y
When expressed as relational matrices, the computation of R; o R, is
straightforward like matrix multiplication with the replacement of sum by max
and product by min operators. The following example illustrates the
computation process of the max-min composition operation.

Example 2.10: Let X={x;, x5, X3}, Y={y1, y»} and Z={z,, z,} be three universe
of discourses and R, (X, y) and R, (y, z) are two fuzzy relations on X X Y and Y
x Z respectively. Suppose R; and R, denote 'x is close to y' and 'y is close to z'
respectively. Given R; and R, as follows we are interested to compute the
relation R; that denotes ' x is close to z'.

0.1 02
LetR, = 0.9 0.8

04 05 and R,=
0.7 0.6

0.7 038
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Then R3= Rl ORZ

max{min(0.1, 0.9), min(0.2,0.7)} max {min(0.1, 0.8), min(0.2,0.6)}

max{min(0.4, 0.9), min(0.5, 0.7)}  max{min(0.4, 0.8), min(0.5, 0.6)}

max{min(0.7, 0.9), min(0.8, 0.7)} max{min(0.7, 0.8), min(0.8, 0.6)}

02 02
05 05
07 0.7

It may be added that the (i, j)th element of the relational matrix R; indicates
the membership of closeness of x; and z;. By notation Rz (i, j)= Ur3(X;, 7).

It is interesting to note that the max-min composition operation satisfies the
following properties. Let P, Q and R be 3 relational matrices defined on X X Y,
Y X Z and Z x W respectively. Also assume that the matrices composed by o
operator have dimensional compatibility.

Po(QoR)=PoQ)oR (associative) (2.57)
Po(QUR)=Po0Q)u PoR) (distributive over union) (2.58)
Po QN R)c PoQ) n(PoR) (weakly distributive over intersection)
(2.59)
Qc R= PoQc PoR (monotonic) (2.60)

Besides max-min composition, max-product composition operator is also
prevalent in the literature of fuzzy sets. A formal definition of max-product
composition operation is introduced below.

Given 2 fuzzy relations R; (x, y) and R, (y, z) defined on X X Y and Y X Z

respectively. The fuzzy relation Rj; (x, z) defined on X X Z, can be obtained by
max-product composition operator as outlined below:

R3(x, ) ={Urs(x, 2)/ (x, 2)}
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where Ur3(X, )= max[Ug;(X, y) * Ura(Y, 2)] (2.61)

y

The asterisk (*) in the last expression denotes algebraic multiplication. The
max-product composition between R; and R, is symbolically denoted in this
book by an asterisk. So, R; can be written as R; * R,. The computation of Rj is
illustrated below in example 2.9.

Example 2.11: Assuming same R; and R, as in example 2.10, we evaluate R; in

this example by max-product composition. Replacing the min by product in the
relational matrix R (vide example 2.10) we find:

R; =R*R,

max{(0.1 *0.9), (0.2*0.7)}

max{(0.4 *0.9), (0.5*0.7)}

max{(0.7 * 0.9), (0.8 *0.7)}

max{(0.1 *0.8), (0.2*0.6)}

max{(0.4 *0.8), (0.5*0.6)}

max{(0.7 *0.8), (0.8, *0.6)}

0.14 0.12
036 032
0.63  0.56

This is all about the computation of Rj.

2.13 Fuzzy Linguistic Hedges

Fuzzy systems are capable of representing sentences containing terms 'more or
less', 'about to', 'very slow', ' a little way' and the like. These are called linguistic
hedges. Representation of the linguistic hedges by membership functions is
necessary for modeling fuzzy systems. In this section we first define linguistic
variables and then introduce linguistic hedges by membership functions.
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Definition 2.17: A linguistic variable is characterized by a 4-tuple: <x, LV, DR,
U > where

X is the name of the linguistic variable,
LV is the linguistic values that x can take,
DR is the dynamic range of the linguistic variable,

and U is the membership function of the linguistic variable x for all linguistic
values supplied in LV.

Example 2.12: The linguistic variable defined above is illustrated in this
example. Let age be a linguistic variable. So, by our definition x = age. Let us
assume that age can assume the following linguistic values: YOUNG, OLD,
VERY-OLD etc. So, LV={YOUNG, OLD, VERY-OLD}. The dynamic range
DR for age is [0, 120] years. We also need to consider the membership functions
of age in the fuzzy sets YOUNG, OLD and VERY-OLD. In other words, the
membership functions [younc(age), Uorp(age) and Wyery-oLp(age) should be
defined for the range of age in [0, 120] years.

Given a linguistic variable x= age say. We can qualify YOUNG or OLD
further by VERY-YOUNG, VERY-VERY-YOUNG, MORE-OR-LESS-
YOUNG, VERY-OLD, NOT-SO-OLD, NOT-SO-YOUNG etc. How can we

represent these linguistic hedges by membership functions?

Suppose we know the membership function pyounc (age), the membership
function VERY-YOUNG then can be defined as follows:

Uvery-voune (age) = [youna (age)]z. (2.62)

Similarly, we can define the membership functions VERY-VERY-YOUNG as

Uvery-vERY-YOUNG (ag€) = [Uyoung (age)]3 (2.63)

and MORE-OR-LESS-YOUNG as

LMORE OR-LESS-YoUNG (age) = [Lyoung (age)]”’. (2.64)

The following definitions are generally used to represent linguistic hedges by
membership functions.
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Definition 2.18:Let Liy(x) be membership function of a linguistic variable x in a
fuzzy set A. The operation concentration (CON) and dilation (DIL) are then
defined by the following membership functions:

Heona(X) = [T (2.65)
UpiL-a(X) = [HA(X)]O‘? (2.66)

Fuzzy linguistic hedges such as VERY or VERY-VERY can be best
described by the concentration operation. On the other hand, linguistic hedges
MORE-OR-LESS, AROUND etc. are usually denoted by the dilation operation.

Another interesting operation, well-known as contrast intensification
increases the values of 1,(x), when it is above 0.5 and diminishes those which
are below 0.5. The following definition presents one way of contrast
intensification.

Definition 2.19: The operation contrast intensification on a linguistic value A
is defined by the following membership function.

Hivt-a(x) = 2 [MA(0)] for 0< pa(x) <0.5,

=1-2(1 - pa(x))* for 0.5< pa(x) < 1, (2.67)

Membership functions of the linguistic variables in a fuzzy set are generally
constructed in a manner so as to satisfy the criteria of orthogonality, presented
below.

Definition 2.20: Let T={t,, t,, ...., t,} be a term set of a linguistic variable x on
the universe X. The term set T is called orthogonal if it satisfies the following
criterion:

n
Qs x)=1, VxeX, (2.68)
i=1

where t; 's are convex and normal fuzzy sets defined on X.

Example 2.13: Consider a fuzzy set AGE. Let CLOSE-TO-18 and CLOSE-TO-
20 and CLOSE-TO-22 be 3 fuzzy linguistic values of the variable age in the
range [18, 22] years. We now construct the membership functions of these fuzzy
sets in a manner such that sum of the membership of these fuzzy sets over the
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age variable is 1 and the fuzzy sets are convex. One way of constructing the
above fuzzy sets is illustrated below.

Uerosetoas(age) ={1.0/18, 0.0/20, 0.0/22}
Uerosetoao(age)= { 0.0/18, 1.0/20, 0.0/22} and
HeroseTo(age)={ 0.0/18, 0.0/20, 1.0/22}

It may be noted that all the above fuzzy sets are convex since each membership
function has a single rising peak. Further, sum of the memberships at any age is
always 1.

2.14 Summary

The chapter presented an introduction to fuzzy sets, fuzzy relations and a few
important fuzzy operators and concepts. Among the fuzzy operators, t-norm and
s-norm have massive applications in fuzzy reasoning systems. The concept of
projection of fuzzy relations also has significant applications in the logic of
fuzzy sets. The chapter also introduced different types of membership functions.
Selection of these functions in a particular application calls for a domain specific
knowledge of the users. For example, the YOUNG fuzzy set can be represented
by a Gaussian type membership function, whereas the fuzzy set MODERATE-
SPEED of a mechanical moving system can be described by a trapezoidal
membership function.

Linguistic variables are of a great concern in designing a fuzzy system.
Design of an orthogonal set of linguistic terms is usually very difficult. So, in
most cases a near orthogonal linguistic set of terms, where the sum of
membership at all values of the dynamic range of the linguistic variables is
approximately equal to one, is preferred.

Exercise

1. According to Ohm's law the current passing through a resistive device
causes a potential drop across the device, and the drop thus obtained is
proportional to the amplitude of the current.

Assume that we have 3 ammeters and 2 voltmeters, which are used in 6
possible combinations to measure the resistance. Let the readings obtained

be denoted by a (I, V) pair in mA and volts respectively, where

(I1, V1) =(1,10), (I, Vo) =(1.1,10.1), (I3, V3)=(0.9,9.1),
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(L, V)= (0.95,9.52), (Is, Vs)= (1.15, 11.6) and (I, V)= (1.2, 11,2).

Let the absolute value of the resistance identified from its color code be
10K-ohm. Design a fuzzy set that describes GOOD-MEASUREMENT.

[Hints: Compute R; = V/I; for i =1 to 6. Determine the absolute value of
the deviations abs(Ri- Rypeoreticar)- Then the measurement is good for those i
where the absolute value of deviation is small, and those measurements
should have a membership close to 1. When the absolute value of deviation
is large, the membership should be small. One membership function is
given below.

WGOOD-MEASUREMENT (Rl)

=1- {abS(Ri' theoretical) / {max abS(Ri' Rtheoretical)} }]
i

Apply dilation and concentration on the constructed fuzzy set in Exercise 1
to determine the fuzzy sets MORE-OR-LESS-GOOD-MEASUREMENT
and VERY-GOOD-MEASUREMENT.

Determine the membership distribution of the fuzzy set NEITHER-VERY-

GOOD-NOR-VERY-POOR-MEASUREMENT for the problem given in
Exercise 1.

[Hints: Try with max{(1-lyery-coop(Ri)), (1-Uvery-roor(Ri))}.]

Given a fuzzy set A={0.1/1, 0.2/-1, 0.2/2, 0.4/-2, 0.3/3}. Also given a
function f(x) = x°. Determine B = f(A) by usng the extension principle.

[Hints: B=f(A)= { max(0.1,0.2)/ 1*, max(0.2, 0.4)/ 2%, 0.3/3’}
={0.2/1, 0.4/4, 0.3/9}]

Given f(x)= x* +4, find f(A) by extension principle for the following fuzzy
set A= {0.1/2, 0.3/-2, 0.6/-3}.

[Answer: f(A)={0.3/8,0.6/13}]

Find the X- and Y-projections of the following relational matrix.
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y—

— >

¢ |02 04 |07

0.1 {02 |05

[Answer: X-projection = {0.9/5, 0.7/6, 0.5/7} and
Y-projection ={0.8/1, 0.9/2, 0.7/3}.]

Verify with an example of two (3 X 3) fuzzy relational matrices that
DeMorgan's theorem presented below holds good for the matrices:

(Ri0Ry)* =R @ Ry,

where R; and R; are 2 relational matrices of compatible order, ¢ denotes the
one's complementation operation over the elements of the matrix; o and @
denote max-min composition and min-max composition operator
respectively. The min-max composition operator is applied like max-min
composition with the replacement of max by min and min by max.

x and y are two fuzzy linguistic variables in the same universe U. We define

two fuzzy relations to represent that 'x is close to y'. Which of these two
relations can represent a sharp estimation of CLOSENESS of x and y?

a) Rlcroseto(x, y) = expl- (x - y)’]
b) R2¢1ose10(X, y)=exp[- abs(x - y)]

[Answer: (a) because the square term helps falling off the exponential
function for a slightly large difference between x and y.]
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